
Meccanica Dei Robot

Universita degli studi Roma3

Docente: Nicola Pio Belfiore

Appunti di: Aurora Mascioli

Anno Accademico 2025/2026



NOTESTOBOOK 1

Indice

1 Il Multibody 2

1.1 Derivazione della formula di Rodrigues . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Parametri di Eulero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Analisi cinematica con parametri di Eulero . . . . . . . . . . . . . . . . . . . . . 3

1.4 Analisi dinamica – Cenni introduttivi . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Equazioni di Newton–Eulero per la dinamica del Multibody 6

2.1 Sistema di riferimento e notazione . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Prima equazione cardinale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Seconda equazione cardinale – Momento della quantità di moto . . . . . . . . . . 7

2.4 Formulazione per massa distribuita . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Derivata del momento della quantità di moto . . . . . . . . . . . . . . . . . . . . 9

2.6 Momento delle forze esterne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Sistema di Newton–Eulero in forma compatta . . . . . . . . . . . . . . . . . . . . 11

3 La simulazione dinamica nel Multibody 11

3.1 Formulazioni con diverso indice differenziale . . . . . . . . . . . . . . . . . . . . . 11

3.2 Equazioni di vincolo nello spazio . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Equazioni della dinamica con parametri di Eulero . . . . . . . . . . . . . . . . . . 13

3.4 Sistema completo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



NOTESTOBOOK 2

1 Il Multibody

Ai fini del calcolo dei risultati e per evitare configurazioni critiche, si ricorre ad una trattazione
basata sulla rotazione asse-angolo: una formulazione non minimale dove si esprime la matrice
di assetto in funzione di 4 parametri anziché 3. Si opera in SO(3): tutto si muove come se fosse
un moto sferico attorno all’origine.

[Rotazione asse-angolo] Si stabilisce la posizione di un sistema di riferimento ruotato rispetto
ad un sistema fisso specificando:
• la direzione dell’asse di rotazione u⃗ (versore);
• l’angolo di rotazione θ.

1.1 Derivazione della formula di Rodrigues

Si suppone di avere un generico corpo che ruota di un angolo θ attorno un asse passante per
l’origine. Si fissa un sistema di riferimento {E} dove e⃗3 è lungo la direzione di rotazione e
e⃗1 è orientato in modo che il vettore v⃗, che unisce il generico punto P appartenente al corpo
all’origine O, sia nel piano e⃗1e⃗3. A seguito della rotazione, il punto P si è spostato in P ′ ed è
indicato con v⃗′.

Si vuole determinare la matrice di assetto [A] che permette di passare da v⃗ a v⃗′, in funzione
di θ e u⃗.

Figura 1: Rotazione di un vettore v⃗ attorno all’asse u⃗: decomposizione nelle componenti parallela
v⃗∥ e perpendicolare v⃗⊥ all’asse.

Decomposizione del vettore.

v⃗′ = v⃗′∥ + v⃗′⊥ (1)

v⃗∥ = (v⃗ · u⃗) u⃗ (2)

v⃗⊥ = v⃗ − v⃗∥ = −u⃗× (u⃗× v⃗) (3)
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Componenti dopo la rotazione.

v⃗′∥ = v⃗∥ (4)

v⃗′⊥ = v⃗′⊥,1 + v⃗′⊥,2 (5)

v⃗′⊥,1 = cos θ v⃗⊥ (6)

v⃗′⊥,2 = sin θ (u⃗× v⃗) (7)

Si scrive il vettore v⃗′ come somma vettoriale dei termini:

[Formula di Rodrigues]

v⃗′ = (v⃗ · u⃗) u⃗− cos θ u⃗× (u⃗× v⃗) + sin θ (u⃗× v⃗) (8)

In forma matriciale:
{v′} = [A(u⃗, θ)]{v} (9)

Si è trovata un’espressione della matrice di assetto che permette di esprimere la nuova posizione
che il generico vettore v⃗ assume dopo una rotazione di un angolo θ attorno alla retta definita
dal versore u⃗.

1.2 Parametri di Eulero

Si perviene ad una formulazione più compatta ed elegante della matrice di assetto in notazione
asse-angolo introducendo i parametri di Eulero:

[Parametri di Eulero]

e0 = cos
θ

2
, e1 = u1 sin

θ

2
, e2 = u2 sin

θ

2
, e3 = u3 sin

θ

2
(10)

con la condizione di normalizzazione:

e20 + e21 + e22 + e23 = 1 (11)

Introducendo il vettore {e} = {u} sin θ
2 , si ottiene la forma compatta di [A]:

[Matrice di assetto con parametri di Eulero]

[A] = (2e20 − 1)[I3] + 2{e}{e}T + 2e0[ẽ] (12)

dove [ẽ] è la matrice antisimmetrica associata al vettore {e}.

Esistono più modi per calcolare i parametri di Eulero, che sono dipendenti fra loro: si sceglie
quello che fornisce il risultato più preciso numericamente.

1.3 Analisi cinematica con parametri di Eulero

Definiti i parametri di Eulero, si vuole svolgere un’analisi cinematica (e poi dinamica) attraverso
questi parametri. Si introducono:
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Vettore dei parametri.

Il vettore di 4 elementi {p}, corredato dalla condizione di normalizzazione:

{p} =


e0
e1
e2
e3

 , {p}T {p} = e20 + {e}T {e} = 1 (13)

Matrici [E] e [G].

[E] =
[
−{e} [ẽ] + e0[I3]

]
dimensione [3× 4] (14)

[G] =
[
−{e} −[ẽ] + e0[I3]

]
dimensione [3× 4] (15)

Tali che:
[A] = [E][G]T (16)

Le matrici [E] e [G] sono propriamente scelte per restituire [A].

Relazioni cinematiche.

I parametri di Eulero sono funzione del tempo. Le derivate di [E] e [G] sono associate alla
derivata di [A], e derivando {p} si conosce la posizione successiva del riferimento.

Dalle derivate di {p}, [E] e [G] si ricavano relazioni che forniscono [Ȧ] e {ω}:

• Si correla la variazione di [E] e [G] (e quindi una variazione dei parametri di Eulero) a {ω}.
• Si ottiene [Ȧ] funzione solo di [G] e della sua derivata.
• Nota [Ȧ], si ricava {ω} legata a [G] e {ṗ}.

Nel riferimento fisso si usa [E] al posto di [G] nell’espressione di {ω}.

Derivando {ω} si ottiene l’accelerazione angolare espressa nel riferimento mobile o nel riferimento
fisso, permettendo di legare le derivate seconde dei parametri di Eulero all’accelerazione angolare.
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1.4 Analisi dinamica – Cenni introduttivi

Figura 2: Sistema di riferimento fisso e mobile con spostamento virtuale {dr}.

La posizione di un punto generico è:

{r} = {r0}+ [A]{s} (17)

Si introduce lo spostamento virtuale {dr}:

{dr} = {dr0}+ [dA]{s} (18)

dove [dA] rappresenta la variazione virtuale della matrice di assetto, compatibile con i vincoli.

A seguito dello spostamento virtuale, si deve ottenere una matrice [A + dA] che appar-
tenga allo stesso gruppo di [A] (teoria dei gruppi): deve essere verificata la condizione di
ortogonalità

[A][dA]T = −[dA][A]T (19)

[Matrice di rotazione virtuale]
[dΘ] = [dA][A]T (20)

Di conseguenza:

{dr} = {dr0}+ [dΘ][A]{s} = {dr0}+ [dΘ]{rrel} (riferimento fisso) (21)

{dr} = {dr0}+ [A]([dθ]{s}) (riferimento mobile) (22)

Notazione con quaternioni.

In alternativa alla notazione matriciale, si può usare la notazione con quaternioni, sempre
definiti a partire dai parametri di Eulero:

q = e0︸︷︷︸
parte reale

+ e1i+ e2j + e3k︸ ︷︷ ︸
parte immaginaria

(23)

I quaternioni, pur essendo composti da soli 4 parametri, hanno associata una notazione e
una matematica dedicata.
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Sintesi.

• Nota la posizione, si ricavano i parametri di Eulero e quindi la matrice [G].
• Con [G] e ˙[G] si calcola [Ȧ] poiché [Ȧ] ∝ [G] ˙[G]

T
.

• Nota [Ȧ] si calcola {ω} che è legata a [G] e {ṗ}.
• Derivando {ω} si ottiene l’accelerazione angolare, legata a {p̈}.

2 Equazioni di Newton–Eulero per la dinamica del Multibody

Si ricordano le equazioni cardinali espresse in forma vettoriale:
F⃗ =

dp⃗

dt

M⃗O =
dH⃗O

dt
+ v⃗O × p⃗

(24)

Il termine v⃗O× p⃗ = 0 se si sceglie accuratamente il polo (ad esempio coincidente con il baricentro
o fisso).

2.1 Sistema di riferimento e notazione

Si considera un sistema rigido di masse localizzate (la distanza fra masse è fissa). Si studia il
singolo corpo j-esimo e si definiscono i sistemi di riferimento:

• Fisso (F)
• Mobile (locale al corpo j-esimo)

Figura 3: Sistema di riferimento fisso (F) e mobile (R) con decomposizione del vettore posizione.

2.2 Prima equazione cardinale

Si riscrive la prima equazione cardinale in notazione matriciale:
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[Prima equazione cardinale – forma matriciale]

{F} = {ṗ} = [M ]{r̈G} (25)

dove:

{F} = {Fx Fy Fz}T (26)
{p} = M{ṙGx ṙGy ṙGz}T (vettore q.d.m.) (27)

{rG} = {rGx rGy rGz}T (28)

[M ] =

M 0 0
0 M 0
0 0 M

 (matrice delle masse) (29)

2.3 Seconda equazione cardinale – Momento della quantità di moto

Momento rispetto un polo generico A.

H⃗A =
∑
i

r⃗Ai × p⃗i ≡ {HA} =
∑
i

mi[r̃Ai]{ṙi} (30)

dove r⃗Ai = r⃗AG + r⃗Gi per i = 1, . . . , N .

Sostituendo l’espressione di {rAi} in {HA}, il momento totale della quantità di moto si suddivide
in due addendi:

H⃗A =
∑
i

mir⃗AG × v⃗i +
∑
i

mir⃗Gi × v⃗i (31)

Per la definizione di baricentro:

R⃗ =

∑
imir⃗i∑
imi

⇒
∑
i

mir⃗AG × v⃗i = M [r̃AG]{ṙG} (32)

[Teorema del trasporto del momento]

{HA} = {HG}+M [r̃AG]{ṙG} (33)
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Momento rispetto all’origine del riferimento mobile.

Figura 4: Decomposizione della posizione nel riferimento mobile.

H⃗O =
∑
i

mir⃗Oi × v⃗i (34)

con r⃗i = r⃗O + r⃗Gi e v⃗i = v⃗O + ω⃗ × r⃗Gi.

Sviluppando:
H⃗O =

∑
i

mi(r⃗O × v⃗O) +
∑
i

mir⃗Gi × (ω⃗ × r⃗Gi) (35)

Poiché: ∑
i

mir⃗Gi = [A]
∑
i

mi{si} = Mr⃗G (36)

Applicando le regole del doppio prodotto vettoriale:∑
i

mir⃗Gi × (ω⃗ × r⃗Gi) = [A][J ]{jω} (37)

Si studia nei riferimenti locali perché, prima di assemblare il sistema completo, i singoli corpi si
possono analizzare solo nel proprio riferimento locale.

[Momento della q.d.m. rispetto all’origine mobile]

{HO} = M [r̃G]{ṙO}+ [A][J ]{jω} (38)

Se l’origine del riferimento mobile coincide con il baricentro, il primo termine è nullo ({rG} =
{0}).
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2.4 Formulazione per massa distribuita

Figura 5: Elemento di massa dm posizionato in Pi con vettori posizione.

Si definisce il momento della quantità di moto con polo in G espresso nel riferimento j-esimo:

{jHG} =

∫
V
[r̃ji ]{ṙ

j
i } dm (39)

Essendo v⃗i = v⃗G + ω⃗ × r⃗Gi:

{jHG} = −[r̃jG]

∫
V
{jrGi} dm+

∫
V
[r̃jGi][ω̃

j ]{jrGi} dm (40)

Se il centro del riferimento mobile O coincide con il baricentro G, l’espressione si semplifica
perché

∫
V {

jrGi} dm = 0:

[Momento della q.d.m. rispetto al baricentro]

{jHG} = [jJG]{jω} (41)

Momento rispetto a un polo generico A.

Applicando il teorema di Huygens-Steiner:

{jHA} = M [r̃jAG]{
j ṙA}+ [jJA]{jω} (42)

2.5 Derivata del momento della quantità di moto

La seconda equazione cardinale stabilisce che:

dH⃗O

dt
=

d

dt

∑
i

r⃗i × p⃗i =
∑
i

v⃗i × p⃗i +
∑
i

r⃗i ×mia⃗i (43)

Il termine
∑

i v⃗i × p⃗i = 0 perché v⃗i ∥ p⃗i.

dH⃗O

dt
=

∑
i

r⃗i ×mi
dv⃗i
dt

=
∑
i

r⃗i × F⃗ ext
i +

∑
i

∑
j

r⃗i × F⃗ij︸ ︷︷ ︸
=0

(44)
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I momenti delle forze interne si bilanciano.

[Seconda equazione cardinale] Per un sistema di masse localizzate:

dH⃗O

dt
= M⃗O (45)

Per un sistema continuo:
d{jHO}

dt
=

∫
V
[r̃ji ]{

j r̈i} dm (46)

Figura 6: Schema per il calcolo della derivata del momento della q.d.m.

Espressioni cinematiche.

{jri} = {jrO}+ {jrGi} (47)
{j ṙGi} = [ω̃j ]{jrGi} (48)
{j r̈i} = {j r̈O}+ [ ˙̃ωj ]{jrGi}+ [ω̃j ][ω̃j ]{jrGi} (49)

Sostituendo in d{jHO}
dt si ottiene un’espressione con 6 addendi, ognuno dei quali viene sviluppato

e semplificato separatamente.

2.6 Momento delle forze esterne

Si calcola il momento delle forze esterne rispetto al polo O:

M⃗O =
∑
k

r⃗k × F⃗k =
∑
k

r⃗O ×mk
d2r⃗k
dt2

+
∑
k

r⃗Ok × F⃗k (50)

= r⃗O ×M
d2r⃗G
dt2

+ M⃗o (51)

In notazione matriciale:
{MO} = M [r̃O]{r̈G}+ {Mo} (52)

dove {Mo} è il momento delle forze esterne rispetto al polo o, origine del riferimento locale.
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Equazione di Eulero.

Eguagliando le espressioni di d{HO}
dt e {MO}, e supponendo o ≡ G:

[Equazione di Eulero per moti rotazionali]

{Mo} = [Jo]{α}+ [ω̃][Jo]{ω} (53)

Questa equazione si scrive per tutti i corpi del sistema nelle sue 3 componenti scalari Mx,My,Mz.

2.7 Sistema di Newton–Eulero in forma compatta

Combinando le due equazioni cardinali:

[Equazioni di Newton–Eulero][
M [I] 0
0 [Jo]

]{
{r̈G}
{α}

}
=

{
{F}

{Mo} − [ω̃][Jo]{ω}

}
(54)

dove [Jo] è la matrice di inerzia.

3 La simulazione dinamica nel Multibody

Si studia il problema attraverso l’approccio basato sui moltiplicatori di Lagrange, a cui si
aggiunge l’equazione di vincolo.

3.1 Formulazioni con diverso indice differenziale

Indice 3: {Φ(q, t)} = {0}

Indice 2: [Φq]{q̇}+ {Φt} = {0} (derivando l’equazione di vincolo)

Indice 1: [Φq]{q̈} = {γ}, riconducibile a un sistema ODE: [A]{x} = {b}

Le equazioni di vincolo sono sempre aggiunte al sistema di equazioni della dinamica:

[M ]{q̈}+ [Φq]
T {λ} = {F} (55)

Con l’approccio a indice differenziale 1:

[M ]{q̈}+ [Φq]
T {λ} = {F} (56)

[Φq]{q̈} = {γ} (57)

In forma matriciale compatta [A]{x} = {b}:

[A] =

[
[M ] [Φq]

T

[Φq] [0]

]
, {x} =

{
{q̈}
{λ}

}
, {b} =

{
{F}
{γ}

}
(58)
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3.2 Equazioni di vincolo nello spazio

Si ragiona nello spazio usando i parametri di Eulero. Si considerano i corpi i e j che costituiscono
una coppia cinematica.

[Condizione di vincolo generale]

{Φ({ri}, [Ai], {rj}, [Aj ])} = {0} (59)

L’equazione è composta da tante equazioni scalari quanti sono i gradi di vincolo della coppia.

Differenziando:
[Φr]{dr}+ [Φθ]{δθ} = {0} (60)

La matrice [Φθ] non è uno Jacobiano nel senso classico: {δθ} si ottiene dalla matrice degli
spostamenti virtuali [δΘ] = [δA][A]T . La matrice [δΘ] è antisimmetrica, associata al vettore
{δθ}.

Esempio: coppia sferica.

Figura 7: Coppia sferica tra i corpi i e j con punto comune C.

Si considera un punto C comune ai due corpi:

{r(i)C } = {ri}+ [Ai]{siC} (61)

{r(j)C } = {rj}+ [Aj ]{sjC} (62)

L’equazione di vincolo è:

{Φ} = {ri}+ [Ai]{siC} − {rj} − [Aj ]{sjC} = {0} (63)

Differenziando e introducendo la relazione {δθ} = 2[G]{δp}:

[Φri ]{δri}+ [Φθi ]{δθi}+ [Φrj ]{δrj}+ [Φθj ]{δθj} = {0} (64)

Introducendo le matrici [Φi] e [Φj ], si arriva a una forma compatta:

[Φi]{ṙi}+ [Φpi ]{ṗ} = {0} (65)
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Derivando ulteriormente per ottenere le accelerazioni:

[Φr]{r̈}+ [Φp]{p̈} = {γ} (66)

3.3 Equazioni della dinamica con parametri di Eulero

Prima equazione cardinale.

{F}+ {f} = [M ]{r̈} (67)

con {F} = −[Φr]
T {λ} (forze vincolari).

Quindi:
[M ]{r̈}+ [Φr]

T {λ} = {f} (68)

Seconda equazione cardinale.

{M} = [Jω]{ω̇}+ [ω̃][Jω]{ω} (69)

dove il momento {M} si partiziona in momento delle forze attive e momento delle forze vincolari:

{Mvinc} = −[Φθ]
T {λ} (70)

Vincolo di normalizzazione.

{p}T {p} = 1 ⇒ {p}T {p} − 1 = 0 (71)

Si introduce:

{Φp(p)} =


{p1}T {p1} − 1

...
{pn}T {pn} − 1

 = {0} (72)

Derivando due volte:
[Φp

p]{p̈} = −{ṗ}T {ṗ} · {u} (73)

dove {u} è un vettore unitario appropriato.

3.4 Sistema completo

Si assemblano le equazioni cardinali, il vincolo sui parametri di Eulero e le equazioni di vincolo:

[Sistema dinamico del Multibody]

[M ]{q̈}+ [Φq]
T {λ} = {F}

[Φq]{q̈} = {γ}
(74)

con:
• {λ}: vettore dei moltiplicatori di Lagrange (lineari λ e rotazionali λθ)
• {γ}: vettore delle accelerazioni centrifughe e complementari
• {F}: vettore delle forze generalizzate
• {q̈}: vettore delle coordinate lagrangiane
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I parametri di Eulero aumentano all’aumentare del numero di corpi: {pi} per il singolo
corpo i-esimo. Di conseguenza, servono altrettanti vincoli di normalizzazione.

Sintesi.

• La formulazione asse-angolo con parametri di Eulero evita singolarità tipiche degli angoli di
Eulero classici.

• Le equazioni di Newton–Eulero combinano traslazione e rotazione in un unico sistema ma-
triciale.

• L’approccio con moltiplicatori di Lagrange permette di includere sistematicamente i vincoli.
• Il vincolo di normalizzazione {p}T {p} = 1 è necessario per ogni corpo del sistema.
• La riduzione dell’indice differenziale (da 3 a 1) trasforma il sistema algebrico-differenziale in

un sistema ODE risolvibile numericamente.
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